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Abstract:  
Performance improvement is taken as the primary goal in the asset management. Advanced data analysis is needed to 
efficiently integrate condition monitoring data into the operation and maintenance. Intelligent stress and condition indi-
ces have been developed for control and condition monitoring by combining generalized norms with efficient nonlinear 
scaling. These nonlinear scaling methodologies can also be used to handle performance measures used for management 
since management oriented indicators can be presented in the same scale as intelligent condition and stress indices. 
Performance indicators are responses of the process, machine or system to the stress contributions analyzed from pro-
cess and condition monitoring data. Scaled values are directly used in intelligent temporal analysis to calculate fluctua-
tions and trends. All these methodologies can be used in prognostics and fatigue prediction. The meanings of the varia-
bles are beneficial in extracting expert knowledge and representing information in natural language. The idea of dividing 
the problems into the variable specific meanings and the directions of interactions provides various improvements for 
performance monitoring and decision making. The integrated temporal analysis and uncertainty processing facilitates 
the efficient use of domain expertise. Measurements can be monitored with generalized statistical process control 
(GSPC) based on the same scaling functions.  

INTELLIGENT PERFORMANCE ANALYSIS WITH A NATURAL LANGUAGE INTERFACE   

INTRODUCTION 

Advanced data analysis is used to integrate process and 
condition monitoring measurements. Dimensionless indi-
ces, which are obtained by comparing each feature value 
with the corresponding value in normal operation, provide 
useful information on different faults, and even more sensi-
tive solutions can be obtained by selecting suitable features 
[1]. Generalized moments and norms include many well-
known statistical features as special cases and provide com-
pact new features capable of detecting faulty situations. A 
combination of real order derivatives and generalized 
norms [2] can be used in various applications [3]. Intelligent 
indices are developed from these features by the data-
based nonlinear scaling introduced in [4]. 

There are many ways to measure, monitor and analyse 
maintenance and operation performance [5], e.g. harmo-
nized indicators [6, 7], key performance indicators (KPI) [8, 
9] and overall equipment effectiveness (OEE) [10, 11] pro-
vide useful numeric values. Willmott presents several ex-
amples of OEE improvements with examples of financial 
benefits [12]. 

Trend analysis systems have three components: a lan-
guage to represent the trends, a technique to identify the 
trends, and mapping from trends to operational conditions 
[13]. The fundamental elements are modelled as triangles 
to describe local temporal patterns. The elements are de-
fined by the signs of the first and second derivative, respec-
tively. They are also known as triangular episodic represen-
tations [14].  

Changing operating conditions need to be taken into 
account in prognostics since new phenomena activate grad-

ually with time. In the condition-based maintenance (CBM), 
the most obvious and widely used form of prognostics is to 
predict how much time is left before a failure occurs. The 
time left before a failure is usually called remaining useful 
life (RUL) [15]. The wear conditions collected up to the cur-
rent inspection are used in [16] to define the time for the 
next inspection. Wang compared Weibull and Gamma dis-
tributions in parameter estimation [17]: the distribution of 
residual time starts from the normal distribution and moves 
through skew distributions to a very narrow distribution 
when an actual failure progresses. 

Fatigue is progressive, localised structural damage 
caused by repeated loading and unloading. The history of 
the analysis already began in 1837, when Wilhelm Albert 
published the first fatigue test results [18]. Wöhler conclud-
ed that cyclic stress range is more important than peak 
stress and introduced the concept of the endurance limit. 
The effects of each stress level are taken into account in the 
calculations of cumulative damage from individual contri-
butions [19, 20]. 

Fuzzy set theory first presented by Zadeh form a con-
ceptual framework for linguistically represented knowledge 
[21]. The extension principle is the basic generalisation of 
the arithmetic operations if the inductive mapping is a mo-
notonously increasing function. Several fuzzy modelling 
approaches can be combined: fuzzy arithmetics are suitable 
both for processing the fuzzy inputs and outputs of the rule
-based fuzzy set system; fuzzy inequalities produce new 
facts; fuzzy relations can be represented as the sets of al-
ternative rules, where each rule has a degree of member-
ship [22]. 
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This paper focuses on the methodologies of developing 
intelligent performance measures based on the nonlinear 
scaling of measurements and domain expertise. The solu-
tions aimed for performance monitoring and decision mak-
ing is enhanced with temporal analysis, uncertainty pro-
cessing and a natural language interface. 

DATA ANALYSIS 

Detecting operating conditions and faults can be based 
on data analysis of various types of measurements (Fig. 1). 
The feedback information comes from performance indi-
ces. Nonlinear scaling brings all these to the same scale as 
numeric values and linguistic meanings. 

Features 

Normalisation or scaling of the data is needed since 
measurements with considerably different magnitudes 
cause problems in modelling. The nonlinear scaling extends 
modelling to various statistical distributions and allows re-
cursive tuning. 

Arithmetic mean and standards deviation, which are the 
key statistical features in industrial practice, are special 
cases of generalized norms 

 
 
 
  

where the order of the norm         is non-zero. The analysis 
is based on consecutive equally sized samples. Duration of 
each sample is called sample time, denoted τ, and N is the 
number values in the sample. For waveform signals, the 
number of signal values           , where      is the number of 
signal values which are taken in a second. The norm (1) has 
the same dimensions as the signals      , where α is the or-
der of derivation, e.g. α = 2 for widely used acceleration 
signals. The analysis can also use derivated signals. The ge-
neralized norms were introduced for condition monitoring 

[2, 3]. The norm values increase monotonously with increa-
sing order if all the signals are not equal. 

The computation of the norms can be divided into the 
computation of equal sized sub-blocks, i.e. the norm for 
several samples can be obtained as the norm for the norms 
of individual samples. The same result is obtained using the 
norms of the sub-blocks: 

where Ks is the number of samples. Each sample has N va-
riable values. As the aggregation can be continued to lon-
ger and longer time periods, this generalizes the practice 
used automation systems for the arithmetic means. 

High order derivatives of the acceleration signal im-
prove fault detection [2, 3]. Stress analysis can be done 
without derivation, but the sensitivity is improved when 
higher orders α are used. Spectral norms also answer the 
question of which frequency range the changes are in since 
they combine the time domain analysis with the frequency 
domain analysis [24]. 

Performance indicators 

Harmonized indicators are used for monitoring mainte-
nance actions on a management level, where the indicators 
are based on cost, time, man-hours, inventory value, work 
orders and cover of the criticality analysis [6, 7]. 

Key performance indicators (KPIs) are quantifiable mea-
sures which reflect the critical success factors and the goals 
of the organization. KPIs differ depending on the organiza-
tion and can focus on different parts and levels of the pro-
cess. Accurately defined and measured KPIs provide fee-
dback information for decision making. The maintenance 
function covers various aspects, including quality assuran-
ce, financial, reliability, planning, execution, strategic, data 
completeness, logistics and competency [9]. The perfor-

Fig. 1 Detecting operating conditions and faults 
Source: [23]. 
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mance metrics can be assessed with the SMART criteria: 
specific, measurable, attainable, realistic and timely [8]. 

Overall equipment effectiveness (OEE) is a set of bro-
adly accepted non-financial metrics which reflects the ma-
nufacturing success by availability (uptime), performance 
rate and quality rate [10, 11]. 

Nonlinear scaling 

The z-score based linear scaling solutions are extended 
to asymmetric nonlinear scaling functions defined by two 
second order polynomials (Fig. 2).  

The parameters of the polynomials are defined with five 
parameters corresponding the operating point cj and four 
corner points of the feasible range [25]. The feasible range 
is defined as a trapezoidal membership function defined by 
support and core areas, see [26]. The scaling functions are 
monotonously increasing throughout the feasible range, 
see [22, 27]. This is satisfied if the coefficients,  

 
 
 
 
 
 
 

are restricted to the range               . 
 
The scaled values are obtained by means of the inverse 

function        : 
 
 
 
     
 
 
 
 
 

Where     ,      ,      and         are coefficients of the corre-
sponding polynomials represented by 

 
 
 
 
      
 
 
 
Data-based tuning by using generalized norms and 

skewness was introduced in [4]. The constraints are taken 
into account by moving the corner points or the upper and 
lower limits if needed. The systems can be tuned with ge-
netic algorithms [27]. 

Intelligent indices 

Intelligent indices are obtained from measurements and 
features by the nonlinear scaling approach. The indices 
obtained from short samples are aimed for use in the same 
way as indirect measurements, e.g. to indicate stress or 
condition (Fig. 1). Several indices can be combined in lin-
guistic equation (LE) modelling since the indices are dimen-
sionless. Grouping is important for large scale systems [28]. 

The cavitation index is an example of a stress index [4]: 
the approach provides four levels whose values ranges 
shown in Table 1 are consistent with the limits of the vibra-
tion severity ranges defined in [29, 30]. Strong cavitation 
can be avoided with better an allocation of the energy pro-
duction [31].  

In a hot rolling mill, the stress indices were developed 
by using torque measurements: the feature is difference 
between the effective and average values, i.e. 

  
  
  

 
where xj is the fillet split. The time interval can be different 
for the passes. Since the orders of the norm are here 1 and 
2, also negative values of xj can be used [32]. 

Stress indices for the front axle of a load haul dumper 
(LHD) have been developed from acceleration signals by 
 

using feature                    . The analysis provides good indica-
tions of different stress contributions in these machines, 
which operate in harsh conditions where failures may be 
difficult to repair [33]. The cumulative stress method has 
recently been used in the monitoring of a rod mill [34, 35]. 

 

Table 1 
Severity cavitation  
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Fig. 2 Feasible shapes of membership definitions fj and corre-
sponding derivatives Dj: coefficients adjusted with the core 
(left) and support (right). Derivatives are presented in three 
groups: (1) decreasing and increasing, (2) asymmetric linear, 
and (3) increasing and decreasing  
Source: [27].  
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Cavitation 
index 
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Source: [4].  
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Intelligent indices based on two generalized norms are 
highly sensitive to faulty situations in the supporting rolls of 
a lime kiln. Surface damage and misalignment are clearly 
detected. The data set covers surface problems, good con-
ditions after grinding, misalignment, stronger misalign-
ment, very good conditions after repair work, and very 
good conditions one year later [4]. Sensitivity is also im-
proved for weak friction and small fluctuations. This is use-
ful in detecting lubrication problems. All the supporting 
rolls can be analyzed using the same approach throughout 
the data set. The results are consistent with the vibration 
severity criteria: good, usable, still acceptable, and not ac-
ceptable.  

The condition indices of the LHD machine need to be 
obtained repeatedly in similar steady operating conditions 
[33]. Extensions to real and complex order derivatives are 
discussed in [36]. 

TEMPORAL ANALYSIS 

Fluctuations, trends and models are used in temporal 
analysis for all types of measurements, features and indi-
ces. Recursive updates of the parameters are needed in 
prognostics. 

Fluctuations 

The fluctuations are evaluated as the difference of the 
high and the low values as a difference of two moving gen-
eralized norms: 

 
 
 
 

where the orders            and           are large positive 
 

and negative, respectively. The norms are calculated from 
the latest Ks +1 values, and an average of several latest 
 

values of                is used as the feature of fluctuation. The 
 

feature, which was originally developed for control [37], is 
easy to calculate and more robust than using the difference 
of the actual maximum and minimum. 

The fluctuation indices are calculated from features (7) 
by the nonlinear scaling. Similar calculations can be done 
for  intelligent indices if the variations close to the normal 
conditions are important. 

Trend analysis 

For any variable xj, a trend index              is calculated 
from the scaled values Xj with  

 

which is based on the means obtained for a short and a 
long time period, defined by delays (nS)j and (nL)j , respec-
tively. The weight  is variable specific. The index value is in 
the linguistic range [-2, 2] representing the strength of both 
the decrease and increase of the variable xj [38]. 

Episode alternatives are shown in Fig. 3. An increase is  
 

detected if the trend index exceed a threshold                .  
 

Correspondingly,                    for a decrease. The derivative  
 

of the index            , denoted as             , extends the analysis  
 

to nonlinear episodes. Trends are linear if the derivative is  
 

close to zero:                          . The concave upward mono- 
 

tonic increase (D) and the concave downward monotonic 
decrease (B) are dangerous situations, which introduce 
warnings and alarms. The concave downward monotonic 
increase (A) and the concave upward monotonic decrease 
(C) mean that a harmful trend is stopping. 

Severity of the situation can be evaluated by a deviation 
index 

       
 
whose absolute values are the highest when the difference 
to the set point is very large and is getting still larger with a 
fast increasing speed. 

The trend analysis is tuned to applications by selecting 
variable specific the time periods         and         . The thresh 
 

olds         . Further fine-tuning can be done 
 

by adjusting the weight factors        and       used for the 
 

indices           and           . The calculations are done with 
 

numerical values and the results are represented in natural 
language [39]. 

Trend indices can be calculated from the scaled values 
of measurements and features, intelligent indices and lin-
guistic information. Interpretation in natural language fol-
lows the same guidelines. 

Prognostics 

In a load haul dumper (LHD), the cumulative stress in-
creases fast during the high stress periods and increase is 
practically stopped when the stress is low since only stress 
indices are taken into account in the cumulative stress. [33] 
Recursive updates of the scaling functions become im-
portant in prognostics since the machine or process device 
is in good condition in the starting point. The rough early 
estimates are gradually refined if the failure predictions are 
not yet real. The interaction models are not changed [40]. 

Risk analysis 

Varying operating conditions have been taken into ac-
count in fatigue analysis [32, 41] by representing the Wöh-
ler curves with a linguistic equation 

 
      
 

where the stress index is the scaled value of stress,  
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Fig. 3 Intelligent trend analysis 
Source: [38].  
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The scaling of the logarithmic values of the number of 
cycles,             , is linear. In each sample time, τ, the cycles 
               are obtained by (10) and added to the previous 
contributions by 

      
 
 
where the value range of the sum C is scaled to provide the 
fatigue risk in percent (%).  

The high stress contributions dominate in the summa-
tion. Correspondingly, the very low stress periods have a 
negligible effect, which is consistent with the idea of infi-
nite life time.  The summation of the contributions also 
reveals repeated loading and unloading, and the individual 
contributions provide indications for the severity of the 
effect. The stress levels can be followed by a generalized 
statistical process control approach [42]. At the risk level 
higher than 60%, a single high torque level can have a 
strong effect on the activation of a failure.  

UNCERTAINTY PROCESSING 

Scaling functions developed in data analysis are the 
basis of the uncertainty processing. All scaled values and 
fuzzy terms can be interpreted in natural language. The 
fuzzy interface is also used to introduce additional expert 
knowledge in the calculations. 

Varying operating conditions 

The features and indices are calculated with problem-
specific sample times and the variation with time is han-
dled as uncertainty by presenting the indices as time-
varying fuzzy numbers. The classification limits can also be 
considered fuzzy. 

The parameters of the scaling functions are specific to 
operating conditions, some changes can be taken into ac-
count switching the parameter sets. The parameters be-
come fuzzy numbers if the time period includes different 
operating conditions. The results of the fuzzy scaling are 
fuzzy numbers for crisp values as well. All intelligent indi-
ces, including fluctuation, trend and deviation indices, can 
be presented as fuzzy numbers. 

Knowledge-based information 

Domain expertise can include information about levels 
which can be translated into fuzzy numbers. The labels 
{very low, low, normal, high, very high} or {fast decrease, 
decrease, constant, increase, fast increase} can be repre-
sented by number {-2, -1, 0, 1, 2}. Different shapes of mem-
bership definitions result different sets of default member-
ship functions: the locations depend on the core, the sup-
port and the centre point. However, the linguistic data can 
be understood as scaled values, whose membership func-
tions are equally spaced, i.e. {-2, -1, 0, 1, 2}. The overlap 
between adjacent linguistic terms expresses a smooth tran-
sition from one term to the other [43]. 

The fuzzy sets can be modified by fuzzy modifiers, 
which are used as intensifying adverbs (very, extremely) or 
weakening adverbs (more or less, roughly). The resulting 
terms, e.g.   

 
 

 

correspond to the powers {4, 2, 1, ½, ¼} of the membership 
in the powering modifiers. The vocabulary can also be cho-
sen in a different way, e.g. highly, fairly, quite [43]. Only the 
sequence of the labels is important. Linguistic variables can 

be processed with the conjunction (AND), disjunction (OR) 
and negation (NOT). More examples can be found in [44]. 

Fuzzy calculus 

Fuzzy calculus is suitable for processing fuzzy inputs and 
outputs in the rule-based fuzzy set systems, but the rule-
based system is not necessarily needed (Fig. 4). The exten-
sion principle is the basic generalisation of the arithmetic 
operations if the inductive mapping is a monotonously in-
creasing function of the input. The interval arithmetic pre-
sented by Moore [45] is used together with the extension 
principle on several membership α-cuts of the fuzzy num-
ber xj for evaluating fuzzy expressions [46, 47, 48].  

Fuzzy inequalities produce new facts like A ≤ B and A = B 
for fuzzy inputs A and B. 

Fuzzy rule-based solutions 

In the combined systems, the fuzzy inputs can be fuzzy 
numbers or crisp inputs processed by fuzzy scaling func-
tions (Fig. 4). The results can be defuzzified to crisp values, 
processed with fuzzy arithmetics or passed to other fuzzy 
set systems. 

Type-2 fuzzy models introduced by Zadeh in 1975 take 
into account uncertainty about the membership function 
[49]. Most systems based on interval type-2 fuzzy sets are 
reduced to an interval-valued type-1 fuzzy set. Special cas-
es of fuzzy linguistic equation models, which can be under-
stood as linguistic Takagi-Sugeno (LTS) type fuzzy models, 
are robust solutions for applications where the same varia-
bles can be used for defining operating areas and in the 
submodels. No special smoothing algorithms are needed 
[50]. 

OPERATION AND MAINTMENCE MANAGEMENT 

The nonlinear scaling approach is the basis of the con-
sistent natural language interface. 

Monitoring and control  

The keys of the natural language interface are the mo-
notonously increasing, nonlinear scaling functions, which 
are obtained by generalized norms and moments or de-
fined manually based on domain expertise. The variable 
specific parameters can be recursively updated by using the 
corresponding norms and new data samples. Also the or-
ders of the norms can be updated after drastic changes. 
Since the parameters specific to operating conditions, 
some changes can be taken into account switching the pa-
rameter sets. Uncertainty, fluctuations and confidence in 

)(kCN

)(kCN

 (12)  

 (13)  ,AroughlyAlessormoreAAveryAextremely 

Fig. 4 Combined fuzzy set system  
Source: [22].  
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results are estimated by a difference of norms of high posi-
tive and negative order, respectively. [39] 

Feature levels, uncertainty, trends, trend episodes and 
severity can be evaluated by using scaled values, fluctua-
tion, trend indices and derivatives of trend indices  
(Table 2). 

All indices are in the range [-2, 2] and interpreted in 
natural language labels, e.g. {very low, low, normal, high, 
 

very high}. The trend index           represents levels {fast  
 

decrease, decrease, constant, increase, fast increase}, the 
 

derivative           levels {fast accelerating decrease, acceler- 
 

ating decrease, constant change, accelerating increase, fast 
 

accelerating increase} and the deviation   index  
 

{serious decrease, decrease, normal, increase, serious in-
crease}, respectively. The fuzzy partition of all these can be 
refined by using more levels. 

Advanced signal processing and feature extraction is 
combined with nonlinear scaling to obtain condition and 
stress indices in [33]. More information can be collected 
with reliability-centered maintenance (RCM) [5], and final-
ly, all this can be monitored with statistical process control 
(SPC) [40]. 

Increased computational power in small programmable 
controllers and sensors open new possibilities for the effi-
cient on-site calculations. Programmable automation con-
trollers (PACs) make the algorithm testing efficient since 
the software can be updated easily and measurement set-
up can be customized. Several aspects connected to on-site 
calculations present a method for extracting meaningful 
numbers from high frequency vibration data [51, 52].  

The monitoring interface is aimed to utilize on-line 
measurements in stabilizing, optimizing and coordinating 
control. 

Control strategies and Maintenance 

Process control systems in industry include centralized 
or decentralized process controllers coupled with hosts, 
workstations and several process control and instrumenta-
tion devices, such as field devices. Applications are related 
to business functions in Enterprise resource planning (ERP) 
or maintenance functions in computerized maintenance 
management systems (CMMS). Smart field devices can in-

clude equipment monitoring applications which are used to 
help monitor and maintain the devices [23]. 

Maintenance information is collected from various 
sources: condition monitoring measurements, performance 
indicators, including harmonized indicators, key perfor-
mance indicators and overall equipment effectiveness 
(OEE). The systems include a huge amount of event infor-
mation, which is not necessarily in a numeric form. The 
natural language information can be understood in the 
range [-2, 2] through linguistic levels and modifiers related 
[42].  

At this level, the temporal analysis and uncertainty pro-
cessing become important in detecting operating condi-
tions. Model-based predictions and recursive updates of 
the parameters are needed in decision making, where the 
adaption of the control strategies is used in scheduling the 
condition-based maintenance actions. 

Management 

Performance indicators are specific for different indus-
trial areas [8, 12]. The nonlinear scaling brings the perfor-
mance levels to a consistent range, which can be under-
stood in linguistic terms. The levels and their improvements 
are represented in natural language, e.g. ’excellent im-
provement from poor performance to good perfor-
mance’ [5]. Aggregation is needed for the information ob-
tained from other levels. Uncertainty processing is increas-
ingly important in this level.  

CONCLUSIONS 

The nonlinear scaling approach is the main part of the 
data processing chain which is the integrating part of the 
natural language interface. The calculations are done in 
numeric forms, but the levels and all the indices based on 
them can be represented in natural language. The system 
includes integrated temporal analysis and uncertainty pro-
cessing which facilitates the efficient use of domain exper-
tise. 
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