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Abstract:  
Diagnosing gear tooth and bearing failures in industrial power transition situations has been studied a lot but challenges 
still remain. This study aims to look at the problem from a more theoretical perspective. Our goal is to find out if the 
local regularity i.e. smoothness of the measured signal can be estimated from the vibrations of epicyclic gearboxes and if 
the regularity can be linked to the meshing events of the gear teeth. Previously it has been shown that the decreasing 
local regularity of the measured acceleration signals can reveal the inner race faults in slowly rotating bearings. The local 
regularity is estimated from the modulus maxima ridges of the signal’s wavelet transform. In this study, the measure-
ments come from the epicyclic gearboxes of the Kelukoski water power station (WPS). The very stable rotational speed 
of the WPS makes it possible to deduce that the gear mesh frequencies of the WPS and a frequency related to the rota-
tion of the turbine blades are the most significant components in the spectra of the estimated local regularity signals  

LOCAL REGULARITY ANALYSIS WITH WAVELET TRANSFORM  
IN GEAR TOOTH FAILURE DETECTION 

INTRODUCTION 

Gear tooth and and rolling bearing faults often cause 
high frequency vibration which may be more evident in the 
higher derivatives of acceleration. In many cases the high-
est relative change between a faulty state and normal con-
dition of the machine occurs when the fractional order of 
derivative is a real number. In [1] Kotila, Lahdelma and  
Ruotsalainen suggested that this may be the result of re-
duced regularity of the vibration signal. They also used the 
signal’s wavelet transform to estimate its local regularity 
and showed that the locations of the negative Hölder regu-
larities corresponded to where the rolling elements hit the 
faults on the inner race of a bearing. Here we apply the 
same methods to the accelerometer data from the two-
stage epicyclic gearbox of the WPS. 

In Chapter II we present the signal processing methods. 
We will use the Discrete Fourier Transform (DFT) for spec-
tral analysis, and the modulus maxima ridges of the contin-
uous wavelet transform for local Hölder regularity estima-
tion. This is possible due to Theorem 1, which was proved 
by Mallat and Hwang in 1992 [2]. 

Vibration  measurements from the WPS are described in 
Chapter III and frequencies of the gearbox components are 
calculated. The Chapter continues with the numerical anal-
ysis of the vibration signals. Finally the obtained results are 
discussed in Chapter IV. 

SIGNAL PROCESSING THEORY 

Fourier transforms 

The vibration measurements are stored as sampled se-
quences x = (x0, . . . , xN−1) of length T = ∆t · N,  
where: 
∆t is the sampling interval.  

The spectrum of this sampled signal is calculated with 
the Discrete Fourier transform (DFT) 

  
     
 
 

Its inverse transform (IDFT) is 
   

   
 
Here we have 

equated the inverse as xn, because it returns the original 
signal at the sample points [3]. 

The continuous analogue of the DFT is the Fourier trans- 
form x of x 

  
  
  

 
Its inverse transform is defined as 
  

  
   

 

Continuous wavelet transform 

Wavelet is informally defined as an oscillation with com-
pact support. Theoretically we also allow wavelets whose 
amplitude decays to zero at the infinities. An admissible 
wavelet ψ satisfies 
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The wavelet transform of x is then the inner product 
  

  
  

 
Here t is the point of interest in the signal and s is the 

positive scale at which the wavelet is dilated. The admissi-
bility condition enables the reconstruction of the original 
function from its wavelet transform in suitable function 
spaces, see for example [4]. To make this definition useful 
for the theory and also for the actual vibration signals, x 
must be from the class of generalised functions called tem-
pered distributions. Interested reader may read details 
about distribution theory for example from [5]. We only 
note that (6) is well defined if x is a tempered distribution 
of order m and if the wavelet ψ is m times continuously 
differentiable. The Fourier transform of a tempered distri-
bution is also a tempered distribution and the inverse re-
turns the original signal. 

A wavelet has m vanishing moments if 
 
 
 
 

It should be noted that in practise the continuous wave-
let transform is computed using only a finite sequence and 
summations instead of integrals. The word continuous is 
still used to separate the definition from the actual discrete 
wavelet transform where the scale s is sampled at such 
points that the wavelets form an orthogonal set. 

Hölder regularity and wavelet modulus maxima 

A function x is µ-Hölder continuous for some µ ≥ 0 at 
the point t0 if 

 
   
    

for small values of |h| and Pm is a polynomial of degree  
m ≤ µ. If µ is non-integer, it turns out that Pm is actually the 
m + 1 first coefficients of the Taylor polynomial of x at t0. If 
for all t0 + h on an interval the condition (8) is satisfied, then 
we say that µ is the uniform Hölder exponent of x on that 
interval. 

To extend the definition to negative Hölder exponents, 
we utilise again distributions. Let µ be a non-integer. We 
say that a tempered distribution x of finite order is uni-
formly µ-Hölder on the interval ]a, b[ if its primitive is µ+1-
Hölder on the same interval (primitive = indefinite integral 
for integrable functions, see [5] for the definition for tem-
pered distributions). 

We are interested in how to detect isolated irregulari-
ties in the signal. This means that we want to locate points 
t0 where f is µ-Hölder and also uniformly m-Hölder with  
m > µ elsewhere on the interval. 

A series of local maxima or minima in the time-scale half
- plane of the wavelet transform are called modulus maxi-
ma ridges. In [2] Mallat and Hwang proved that if no such 
ridges exist at the fine scales in a given interval, then f is 
uniformly Hölder continuous on that interval. Thus we 
expect that the modulus maxima ridges will reveal the iso-
lated irregularities in the signal and this is indeed the case. 
Even more is true, since the Hölder exponent can be read 
from the decay rate of the ridges converging to t0 at fine 
scales. The next theorem is also proved in [2]. 

Theorem 1: Suppose that the admissable wavelet ψ has 
compact suppport, is m times continuously differentiable 
and is the mth derivative of a smoothing function. Let x be 
a tempered distribution and its wavelet transform well defi-
ned on ]a, b[ and let t0 ∈ ]a, b[. If there exists a constant C 
and a scale s0 such that all modulus maxima of Wx(s, t) be-
long to the cone 

 

   |t − t0| < Cs    
   
then x is uniformly m-Hölder in a neighbourhood of all the 
points t ∈  ]a, b[, t ≠ t0. Let µ < m be a non-integer. Then x is 
µ-Hölder at t0 if and only if 
 

           |Wx(s, t)| ≤ Asµ    
    
at each modulus maxima inside the cone (9). 

The estimation of the local regularity is thus done in the 
following manner (this is a modified version of the procedu-
re presented in [1]). 
1. Compute the wavelet transform with a wavelet which 

has the desired number of vanishing moments. 
2. Find the local minima and maxima at each computed 

scale. 
3. Follow the minima and maxima from the smallest avail- 

able scale upwards to register the modulus maxima 
ridges. The ridges spread approximately linearly at small 
scales and thus the location of maxima/minima at the 
next scale can be guessed by linear extrapolation. 

4. Estimate also the point where the ridge ends at the fine 
scales by linear extrapolation in the other direction. 

5. If enough maxima/minima are lined up, estimate the 
regularity using (10) and logarithms 

 
   log (|Wx(s, t)|) ≤ log(A) + µ log(s)  

   
and the slope of a least squares line gives µ. 

6. Of all the lines converging to the same point, choose the 
smallest value as µ. 

MEASUREMENTS AND REGULARITY CALCULATIONS 

Gear tooth numbers are almost always relative primes, 
i.e. their greatest common divisor is 1. Thus it takes a long 
time for a gearbox to mesh through all of its tooth pairs. 
The number of revolutions it takes for all the gears to re-
turn to their original positions can be calculated with the 
help of some elementary number theory and these compu-
tations were done for the gearboxes of the WPS in [6]. The 
solutions are typically several minutes and thus not quite 
practical for  numerical work in most cases. It is quite 
adequate to use signal lengths which correspond to the 
revolution time of the slowest rotating component in the 
gearbox. 

Water power station gearboxes 

The Kelukoski water power station has a two-stage epi-
cyclic gearbox. The first (slower) is called gearbox 1 and the 
second (faster) will be called gearbox 2. Both were monito-
red with one WBS CM301 sensor with sampling frequency 
5000 Hz. Every 15 minutes an acceleration signal of length 
7 s was recorded from both measurement points as WAV 
files. There were four continuous periods of data collection 
between 4.4.2013 and 22.8.2013. 

Since the WPS is connected to the Finnish power grid, 
its output frequency is to a high precision 12,5 Hz (the fre-
quency of the power grid is four times this, i.e. 50 Hz).  

 (6)  

 

 (7)  

 

 (8)  

 

 (9)  

 (10)  

 (11)  



 

178                                                                                   Management Systems in Production Engineering 2017, Volume 25, Issue 3                

The characteristic frequencies of the gearboxes are now 
calculated backwards starting from this output. Gearbox 2 
is in the star configuration, which means that it has a sta-
tionary planet carrier and six planet gears (25 teeth). Out-
put is provided via the sun gear (36 teeth), νsunW P S2 = 12,5 
Hz, and input from the gearbox 1 via the ring gear  
(86 teeth). The gear teeth are double helical and the 
gearboxes have plain bearings. The formulas for the frequ-
encies are very simple in the star configuration [7] 
 
 
 
 
 
 
and the mesh frequency νmeshW P S2 = 36 · νsunW P S2 = 450.00 
Hz. 

Gearbox 1 is in planetary configuration, meaning that it 
has a stationary ring gear. The sun gear is the output and 
has 31 teeth and the planetary gears have 25 teeth. The 
ring gear has 81 teeth. We have νsunW P S1 = νringW P S2  (this 
middle part of the two gearboxes is a floating installation) 
and the frequencies are 

 
 
 
 

 
 
 
 
and finally the frequency 

 
 
Measurements from the WPS have previously been stu-

died in [6, 8, 9]. Unfortunately, before the previous break-
down of gearbox 1 several years ago, it had a slightly diffe-
rent set of gears with 35 teeth in the sun gear, 27 in the 
planetary gears and 91 in the ring gear. These give the sa-
me ratio for the output of the gearbox, but the frequency 
of the planetary gears was 3.45 Hz and most importantly 
the mesh frequency was 131.80 Hz. Due to some problems 
with communication these wrong gear numbers were used 
in the publications [8, 9]. Obviously the lack of frequency 
131.80 Hz and the appearance of frequency 117.3 Hz in the 
spectra was a puzzle before this error was spotted. 

Local regularity analysis of measurements from the WPS 

One measurement from both gearboxes was analysed 
from the beginning and end of the measurement period. 
The output power of the WPS was about 7.6 MW during 
those measurements. The signals were shortened to  
214 = 16384 samples, which gives a length of 16384/(5000 Hz) 
= 3.2768 s. Next the continuous wavelet transform (6) was 

 

Fig. 1 Acceleration signal from the gearbox 1 recorded on 4.4.2013 and its wavelet transform modulus 

 

 

Fig. 2 Local Hölder regularity of the signal from Fig. 1 and the amplitude spectrum of the regularity signal  
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computed at scales 1, 1.5, 2, 2.5 and 3 using the Mexican 
hat wavelet. It is the negative normalised second derivative 
of a Gaussian function and has two vanishing moments. 
Obviously it does not have exactly compact support but in 
practise this has little effect on the results. Computations 
were carried out with MATLAB. In the algorithm, a ridge 
was confirmed if a maxima was found from all the compu-
ted scales and they were approximately linearly spaced  
(a deviation of one discrete sample in both directions was 
allowed here in the search of a maxima from the current 
scale). 

Fig. 1 and 3 show the measured vibration signals from 
gearbox 1 and the modulus of their wavelet transforms. 
The measurements were recorded on 4.4.2013 and 
22.8.2013 respectively. The resolution of the accelerometer 
is clearly visible in these low vibration levels. There seem to 
be both ascending and descending ridges with increasing 
scale, which implies both positive and negative Hölder re-
gularities in the signals. Fig. 2 and 4 show the estimated 
local regularities from these signals and also their amplitu-
de spectra. We see that indeed both signals oscillate be-
tween positive and negative regularities and that the maxi-
mum regularity value we can analyse with the Mexican hat 
wavelet (which is 2 according to Theorem 1) is enough for 
these signals. For the calculation of the DFT of the regulari-
ty signal, the missing values are assumed to be zero. This is 
convenient, since the DFT needs an equally spaced vector. 
It must be mentioned though, that the signal is possibly 
infinitely smooth at these points and thus inserting Hölder 
coefficient 0 to them is a crude simplification to make the 
DFT easily computable. 

It seems that the vibrations of gearbox 1 have not chan-
ged noticeably during this short measurement period 
(although in [6] a slight increase in the norms calculated 
from the second derivatives of these acceleration signals 
was observed), so we will discuss the two measurements 
simultaneously. It is interesting that although the spectra of 
both local regularity signals contains an almost uniform 
base across frequencies (that is the spectral content of whi-
te noise), there are also spikes at certain frequencies. Most 
of these are near the multiples of the mesh frequencies of 
the gearboxes, such as 2 ∗ νmeshW P S1 ≈ 234 Hz, 4 ∗ νmeshW P S1 
≈ 469 Hz and 2 ∗ νmeshW P S2 = 900 Hz, 4 ∗ νmeshW P S2 = 1800 Hz, 
5 ∗ νmeshW P S2 = 2250 Hz. The higher speed and bigger vibra-
tion levels explain why the multiples of the mesh frequency 
of gearbox 2 is also visible here. The sidebands which are 
18 Hz apart from νmeshW P S2 and its multiples are sometimes 

even more noticeable than the center frequencies. Thus 
the frequency ≈ 469 Hz mentioned above may actually be 
such a sideband also. These are of course caused by the 
rotation of the planetary gears of gearbox 2. 

The biggest change with time is the increase in the 
frequencies near 2250 Hz. Interestingly, this was also the 
only major change observed in the spectra which were cal-
culated directly from the acceleration signals from the sa-
me measurement period in [6]. It should also be noted that 
since these frequency spikes are so discrete, this change is 
not so huge if one notices that the closest neighbouring 
frequencies of 2270 Hz in Fig. 2 are also quite noticeable. 

There is also one very low frequency spike at about  
5.8 Hz. This oscillation with period 1/5.8 Hz ≈ 0.17 s is visi-
ble in the time domain signals as well. This frequency could 
be 4 ∗ νcarrierW P S1 or even maybe νringW P S2 due to inaccura-
cies in the numerical work and the frequency resolution. 
The turbine has four blades and is connected to the carrier 
of the gearbox 1, which suggests that 4 ∗ νcarrierW P S1  is pro-
bably the correct answer. Thus we could deduce that that 
local irregularities in the acceleration measurements from 
the gearbox 1 are caused by the rotating turbine blades and 
the gear meshes from both gearboxes. 

Fig. 5 and 7 show the measured vibration signals and 
their wavelet transform modulus at the beginning and at 
the end of the measurement period from the gearbox 2. 
Now almost all of the wavelet maxima modulus ridges in-
crease towards fine scales and we thus expect a lot of ne-
gative regularities. Fig. 6 shows the estimated local Hölder 
regularity of the signal from the beginning of the measure-
ment period and the amplitude spectrum of this signal. We 
see that the signal has mainly Hölder exponents between 0 
and -3. The amplitude spectrum is dominated by νmeshW P S2 
= 450 Hz and its multiples. The higher multiples also have 
sidebands which are about 50 Hz above them. Fig. 8 shows 
similar results from the end of the measurement period, 
although now we also see more clearly the sidebands 18 Hz 
apart from νmeshW P S2 and its multiples. The higher speed 
gearbox 2 thus shows quite clearly that the local irregulari-
ties of its measured acceleration signals are mostly caused 
by the meshing events of its gears. Comparing the spectra 
from Fig. 6 and 8 we also see that νmeshW P S2 and its multi-
ples have decreased. This is also visible in the fewer amo-
unt of irregularities in the time domain signal in Fig. 8. It 
may just be that the algorithm failed to recognise as many 
ridges in the later signal or perhaps the vibration has actu-
ally become smoother with time. 

 

Fig. 3 Acceleration signal from the gearbox 1 recorded on 22.8.2013 and its wavelet transform modulus  
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Fig. 4 Local Hölder regularity of the signal from Fig. 3 and the amplitude spectrum of the regularity signal  

 

Fig. 5 Acceleration signal from the gearbox 2 recorded on 4.4.2013 and its wavelet transform modulus  

Fig. 6 Local Hölder regularity of the signal from Fig. 5 and the amplitude spectrum of the regularity signal  
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CONCLUSIONS 

For machines which rotate very precisely at a constant 
speed it is possible to calculate the DFT of the estimated 
local regularity signal and it may contain sharp spikes relat-
ed to the rotating components of the machine. In this pa-
per we have shown this using measurements from the two-
stage epicyclic gearbox of a water power station. 

Minor changes in these spectral components were also 
observed during the almost four-month long measurement 
period. This could be an indication of wear on the gears, 
but this is far from certain. The measurement period was 
very short considering that we can not rule out for example 
seasonal effects which may cause different levels of stress 
on the gearbox. The true condition of the gears is also un-
known. The estimation of the irregularities in the signals is 
also a nontrivial pattern recognition task and thus the re-
sults obviously contain errors. Averaged results from many 
signals could provide more reliable results. Spectral con-
tent directly from the acceleration signals from the same 
measurement period was analysed in [6] and very minor 
changes were observed in those as well. 

The newest version R2016B of MATLAB introduced the 
built-in function wtmm for locating the wavelet modulus 
maxima ridges and estimating the local regularity. Unfortu-
nately, it is not yet thoroughly documented and it seems 
that it searches the ridges starting from the big scales and 

then occasionally fails quite badly in locating the point 
where the ridge should converge. For this reason the au-
thor wrote his own code for the task. 

Longer studies from industrial sites as well as test bench 
studies will be done to learn more about the connection 
between the regularity of vibration and the machine’s 
health. If the machine does not rotate exactly at a constant 
speed, then it is unlikely that the DFT could catch any dis-
crete spectral components from the regularity signal. In 
these cases the signal should at first be order-tracked. This 
can be done relatively easily if a tacho signal, which reveals 
the rotational speed of the shaft, is available. Another op-
tion could be to utilise the cyclostationarity of such a signal 
with the methods of cyclic spectral analysis. 

 
The measurements at the WPS were part of the  

”Integrated condition-based control and maintenance 
(ICBCOM)” project. Author wishes to thank Otto A. Malm 

Foundation for their support on his doctoral studies. 
 
 
 
 
 
 

 

Fig. 7 Acceleration signal from the gearbox 2 recorded on 22.8.2013 and its wavelet transform modulus  

 

Fig. 8 Local Hölder regularity of the signal from Fig. 7 and the amplitude spectrum of the regularity signal 
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